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Abstract

The Cray MTA, a multithreaded architecture, is a new parallel supercomputer
installed at San Diego Supercomputer Center (SDSC). This machine has an architec-
ture quite di�erent from those of other contemporary parallel machines. It has a 
at,
shared memory without locality and has hardware support for very �ne-grained mul-
tithreading. The machine and its associated parallelizing compiler promise great ease
in scalable parallel computing.

We report the results of a study, carried out in July{September 1999, to evaluate
the execution of EUL3D, a code that solves the Euler equations on an unstructured
mesh, on the 8 processor MTA at SDSC. EUL3D captures the essential features of
most unstructured mesh codes used in aerodynamic research and development.

Our investigation shows that parallelization of an unstructured code is very straight-
forward on the MTA. We were able to get an existing parallel code (designed for a
shared memory machine), running on the MTA by changing only the compiler direc-
tives. Furthermore, a serial version of this code was compiled to run in parallel on the
MTA by judicious use of directives to invoke the \full/empty" tag bits of the machine
to obtain synchronization. This version achieves nearly 250 M
op/s per processor
with little variation as the number of processors is increased from 1 to 8. We achieved
this performance without concerning ourselves with the partitioning or placement of
data|issues that would be of paramount importance in other parallel architectures.

Our research shows that the �ne-grained multithreading possible on the custom
built MTA is an interesting alternative to the coarse grained parallelism available on
multiprocessors constructed from commodity microcomputers. The recent introduction
of commercial microcomputers designed speci�cally to support multithreading, such as
the Intel IXP1200, supports our argument.

Index terms: Aerodynamics, Computer architecture, Euler equations,

Parallel computing, Performance evaluation, MTA, Multithreading, Un-

structured meshes, Supercomputing.
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1 Introduction

The Cray MTA, a multithreaded architecture, is a new parallel supercomputer installed at
San Diego Supercomputer Center (SDSC).1 This machine has an architecture quite di�erent
from those of other contemporary parallel machines. It has a 
at, shared memory without
locality and has hardware support for very �ne-grained multithreading. The machine and
its associated parallelizing compiler promise great ease in scalable parallel computing.

We report the results of a study, carried out in July{September 1999, in which we eval-
uated the porting of an unstructured mesh code to the MTA. Algorithms based on unstruc-
tured meshes are ordinarily very diÆcult to parallelize eÆciently on conventional parallel
machines. Our results show that code can be ported with great ease to the MTA and that
the performance achieved is very promising.

We �rst discuss, in Section 2, how the MTA attempts to compensate for the limitations of
conventional parallel machines. We describe the architecture of the machine in some detail
in Section 3. In Section 4 we describe our unstructured mesh solver and how it was ported
to the MTA. Two variants of the code were ported; the measured performance of these codes
is presented in sections 4 and 5. Section 6 presents the results of experiments in which we
arti�cially varied the grain size of the problem in order to make our investigation applicable
to a wider range of mesh solvers. In Section 7, we present our conclusions and plans for
future research.

2 The State of Parallel Computing

Despite nearly half a century of research and development, truly general purpose parallel
computing remains an elusive goal. Very careful programming and a good knowledge of
the target computer's architecture are required to achieve even modest performance. At
the same time, the wide diversity in available parallel architectures means that a program
successfully ported to one machine may require considerable reworking to run well on another.
This discourages practitioners from exploiting parallel computing and con�nes the �eld to
experts, academicians and researchers. Finally, an inordinate e�ort is required to successfully
parallelize an algorithm and, even then, the achieved performance is poor compared with
the theoretical peak. There are a number of reasons for this state of a�airs.

On currently available distributed memory machines, parallel computing involves a never-
ending battle to match computation to architecture. Parallel machines necessarily involve
large numbers of interconnected processors. The utilization of these processors is inevitably
linked to how well the structure of the computation matches (or can be transformed to
match) the structure of the machine. The process of transformation may involve partition-
ing, mapping and reordering of data, as well as reformulation of the computation. These
transformational requirements lead to major combinatorial problems that are often more
diÆcult than the actual problem being solved. The programmer is required to have ex-

1The MTA is a product of Cray Inc., which was formerly Tera Computer Company. In April 2000,

Tera Computer Company acquired the Cray Research business from Silicon Graphics, Inc. and subsequently

changed its name to Cray Inc.



The Cray MTA & Unstructured Meshes, Version 1, Sep. 26, 2000 4

tensive knowledge of the interconnect network, cache hierarchy, arithmetic unit, and other
architectural features.

Figure 1 sketches how the quest for utilization has evolved over time on uniprocessors.
The checkered rectangles in this �gure represent the hardware-time products for the indi-
cated architectures|the higher the utilization, the larger the fraction of grey blocks in this
rectangle. A simple, primitive processor's hardware could be utilized only to a limited ex-
tent. Among the �rst developments in computer architecture was the evolution of pipelined
processors that could deliver higher utilization for certain types of operations. This higher
utilization required additional investments in \performance enhancing" hardware, that is,
hardware that did not contribute to actual computation but was required to improve the
utilization of the \productive" hardware. A modern pipelined processor improves utilization
by considerable investment in such performance enhancing hardware as well as in sophis-
ticated compilers. At the same time, the programmer may have to make some investment
in transforming his program, or even the underlying algorithm, to better utilize the speci�c
hardware. Figure 1 also shows that, in a contemporary pipelined machine, some of the work
done by the hardware may be wasted because of speculative execution.

A modern parallel processor requires relatively larger hardware and software investments
to obtain adequate utilization. Figure 2 illustrates how the productive hardware, i.e., the
hardware that carries out the actual computations for our program, has to be augmented
with additional hardware and software. A contemporary high performance parallel machine
requires performance enhancing hardware in the form of, for example, memory caches, high
speed interconnect, synchronization mechanisms, instruction pipelines, and pipelined arith-
metic units. Furthermore, considerable investment may be needed in the areas of compilers,
operating systems, and analysis tools. Parallel programming platforms such as PVM [5],
MPI [7], PARTI [1], PETSc (www.mcs.anl.gov/petsc), and OpenMP (www.openmp.org)
constitute part of the software overhead. The programmer needs to invest considerable e�ort
in developing his program, including rethinking algorithms and, of course, the diÆcult issues
of partitioning, mapping, and scheduling. Despite these overheads, the utilization achieved
by such processors is low; indeed, there are large classes of problems for which these machines
are considered unsuitable.

One approach to improving utilization is to invest in additional hardware and software
to support parallelism, possibly at the expense of additional compiler overhead. Figure 3
illustrates how specially designed hardware can be used to o�oad the burden placed on the
programmer and on parallelism support software. This proposal rules out the possibility
of using commodity microprocessors for parallel processing and requires a protracted cycle
of development and production. However, the potential bene�ts are very attractive. The
Cray MTA uses this path, as described in Figure 4. By investing heavily in performance
enhancing hardware, the MTA is able to eliminate the issues of parallelism support and data
partitioning. Higher investment in hardware reduces the e�ort required by the programmer
and also increases the utilization of the productive hardware.
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Figure 1: The Quest for Utilization. As uniprocessors have evolved over time, the investment
in non-productive \performance enhancing" hardware has increased. A modern machine also
requires considerable investment in compiler development.
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3 Key Features of the Cray MTA

Detailed information on the architecture may be found in [2, 3]. (The experiences of other
researchers in using the MTA are available in [8, 9, 10].) A useful collection of technical pa-
pers is available at www.cray.com/products/systems/craymta/psdocs.html. We present
a brief overview.

3.1 Zero Overhead Thread Switching

The MTA has special purpose hardware (streams) that can hold the state of up to 128
threads (per processor). (State includes registers, condition codes, and a program counter.)
On each clock cycle, each processor switches to a di�erent resident thread and issues one
instruction from that thread. A blocked thread, e.g., one waiting for a word from memory or
for a synchronization event, generally causes no overhead|the processor just executes the
instructions of some other ready threads.

3.2 Pipelined Processors

Each processor in the MTA has 21 stages. As each processor accepts an instruction from
a di�erent stream at each clock tick, at least 21 ready threads are required to keep it fully
utilized. Since the state of up to 128 streams is kept in hardware, this target of 21 ready
threads is easy to achieve.

3.3 Flat Shared Memory

The MTA has a byte addressable memory. Full/empty tag bits (described below) are as-
sociated with 64 bit words. Addresses are scrambled by hardware to scatter them across
memory banks [2, 4]. As a result, the memory has no locality, and there are no issues of
partitioning data or mapping memory on the machine.

Regarding latencies, the cycle time per memory bank is 35{40 clock ticks, depending on
the system's clock frequency. (At 255 MHz, as is the case for our experiments, this latency
is about 38 ticks.) The access time varies from 150{200 clock ticks, depending upon the
size of the system. The 21 stage processor pipeline is dwarfed by the some 150 cycles of
latency to memory. These latencies are overcome by having programs run with more than
21 threads. Additionally, by using memory lookahead each thread can have multiple memory
references outstanding. While it is guaranteed that arithmetic operations in one instruction
are completed before others in the next instruction in the same thread, memory operations
can be issued up to seven instructions before they are needed to be completed. Consequently,
using this lookahead feature a thread can have up to eight memory references outstanding at
any given instance. A processor typically has hundreds of memory references outstanding.

3.4 Extremely Fine-grained Synchronization

Each 64 bit word of memory has an associated full/empty bit. A memory location can be
written into or read out of using ordinary loads and stores, as in conventional machines.
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Figure 5: The MTA (1 processor).

Load and store operations can also be under the control of the full/empty bit. For example,
a \read-when-full, then set-empty" (y=readfe(x)) operation atomically reads data from a
location only after that location's full/empty bit is set full . The full/empty bit is set empty
during the read operation atomically with reading the data. If the full/empty bit is not set,
the thread executing the read operation suspends (in hardware) and is later retried. The
thread resumes when the read operation has completed. This is a low overhead operation
since the thread is simply removed from and later reinserted into the ready queue. This
feature allows extremely �ne-grained synchronization and is detailed in Section 5.1.

3.5 An Analogy

The aspects of the MTA discussed above give it great 
exibility in attacking parallel prob-
lems. This is best explained with an analogy. Parallel processing may be viewed as the
process of harvesting a wheat �eld. A large, conventional parallel processor is equivalent to
a team of combine harvesters sweeping through a large �eld. Such a team works best when
the �eld is large, uniform and rectangular in shape. Should the �eld be irregularly shaped
and have variations in density, the team will lose eÆciency and perform poorly.

The MTA, in contrast, may be viewed as a huge swarm of insects picking up individual
grains. Such a swarm is insensitive to the shape of the �eld or to any variations in density.
The challenge for each member of the swarm is to transport the grains very quickly and to
move to the next available grain without signi�cant delay. The custom designed hardware of
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Figure 6: A View of the MTA Processor. Each stream may be thought of as a virtual
processor. Some streams may be needed to execute OS functions|a user may not be able
to use all 128 streams per processor.

the MTA satis�es these requirements. In e�ect, the hardware of the machine is partitioned
into small, agile and autonomous units. This, in turn, relieves the programmer from the
onerous task of partitioning his problem. Thus, the one time development cost of partitioning
the hardware eliminates the recurring cost of partitioning problems.

Parallel machines made up of conventional commodity microprocessors cannot be made
to behave in this fashion. Interestingly, recent announcements from industry describe micro-
processors with some support for multithreading. The Intel IXP1200 [6] is one such example,
though its target market is telecommunications and not parallel scienti�c computing.

3.6 MTA Performance Characteristics

At the time of our experiments (July{September, 1999), the clock of the MTA was running
at 255 MHz. There are three units in each processor, all of which may be active during a
single cycle:

Unit Operation Max 
op
M (Memory) { 0
A (Arithmetic) fused multiply-add 2
C (Control) add 1

Total 3

Thus \peak" performance is 3 � 255 = 765 M
op/s. On one processor of the MTA,
the unstructured mesh code ran at about 250 M
op/s with a system clock frequency of 255
MHz, seeing just about one 
oating point operation per cycle time. We discuss more about
our experiments later, where our code achieved almost 2 G
op/s on 8 processors.
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Figure 7: Unstructured Meshes are Widely Used in Aerodynamic and Structural Analysis
Codes. Because of the enormous, irregular variations in density, algorithms based on such
meshes are diÆcult to parallelize on conventional multiprocessors.

4 The Numerical Solver

The code that we chose to implement on the MTA is a representative kernel from EUL3D, a
3D unstructured grid Euler solver. This code uses vertex based variables and an edge-based
loop for residual construction. The kernel reproduces edge-based 
ux loops and vertex based
updates.

Unstructured mesh problems have traditionally been diÆcult to parallelize because of
their need for partitioning, mapping and load balancing. Furthermore, because of the indirect
access to the grid data, such problems are hard to compile.

On the MTA these become non-issues because

1. Data partitioning and mapping are not needed with the 
at shared memory which has
no locality, and

2. Explicit load balancing is not needed because of very �ne-grained multithreading and
an intelligent compiler: loops can be dynamically scheduled across processors with very
little overhead.

The speci�c problem with which we experimented has 53,961 nodes and 353,476 edges.
This is considered to be a medium-sized problem in the aerodynamics community|a large
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Figure 8: Computation in the Edge-Based Loop

problem would have 0.3 million nodes and 3 million edges. We anticipate that a larger
problem would scale better than the one we studied.

At each node of our mesh we store density, momentum (x; y; z components), energy,
pressure, plus some scratch space. This results in approximately 10 variables per node.

For each edge we need to store the identity of the 2 nodes at its end points plus a vector
describing the orientation of the edge. We thus have about 5 variables per edge.

The movement of data in the edge-based loop is described in Figure 8. Pseudocode
corresponding to this loop is given below.

do i=1, totalNodes

initialize variables

enddo
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do cycle=1, totalCycles

do i=1, totalNodes

clear residuals

enddo

do i=1, totalEdges

compute residuals

enddo

do i=1, totalNodes

update variables

enddo

enddo

4.1 Parallel Implementation

When executing the edge-based loop in parallel, it is important to ensure that two threads
do not attempt to update the same node at the same time. One way of ensuring this is to
color the edges of the graph so that no edges incident on same node have the same color.
Once this has been done, all edges with the same color can be processed in parallel.

Although the problem of �nding the minimum color edge coloring of a graph is intractable,
our primary objective is to obtain a coloring with a reasonable number of colors. A simple
greedy algorithm is fast and e�ective for our purposes. On our sample problem, which has
average degree 14, the algorithm yields 24 colors.

In the pseudocode for the edge-colored algorithm, given below, the compiler has to be
told to parallelize the edge loop. This is because it has no way of knowing about the coloring,
and cannot establish that it was safe to parallelize the loop just by looking at the code. The
C$TERA ASSERT PARALLEL compiler directive is used for this purpose.

do i=1, totalNodes

initialize variables

enddo

do cycle=1, totalCycles

do i=1, totalNodes

clear residuals

enddo

do i=1, totalColors

C$TERA ASSERT PARALLEL

do (for each edge of color i)

compute residuals

enddo

enddo
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do i=1, totalNodes

update variables

enddo

enddo

4.2 Performance of Edge-colored Algorithm

The performance of the edge-colored algorithm was measured by varying the number of
streams (1 to 128), and processors (1 to 8). The MTA compiler normally selects the number
of streams for each parallel loop, based on estimated grain size and expected number of
iterations. Instrumentation was developed to request a speci�c number of streams and report
the number of streams actually allocated. All requested streams may not be allocated, even
if a program is run in standalone mode, since some, e.g., may be required by the operating
system. When interpreting run-time data, it is important to ensure that that the number of
streams granted matches the number requested. We measured the performance of EUL3D
under almost standalone conditions and were able to get up to 80{90 streams per processor.
The performance of EUL3D saturates at 60-70 streams per processor, so we see little impact
when the number of streams granted is less than the number of streams requested, provided
we get at least 80 streams.

The curve in Figure 9 shows the performance of the edge-colored algorithm as the number
of streams is varied. The plot labeled 1 processor shows the performance of the algorithm
on one processor. The time per cycle drops very smoothly from 1 to 30 streams and 
attens
out at 60 streams. In the present context, we de�ne speedup as follows.

speedup =
time to execute the algorithm with one stream

time to execute the algorithm with n streams
:

The straight line next to this curve shows the time to run the algorithm under ideal speedup,
i.e., time to execute the algorithm with one stream divided by the number of streams. From
the �gure we can see that the speedup with one processor is about 60, since the curve for
one processor 
attens o� at a level that would ideally be achieved by 60 streams. In this
case there would be no advantage to using more than 60 streams with one processor. The
decision on the number of streams to use per processor is normally made by the compiler
and is not under user control. For our experiments, we developed special routines to control
the number of streams under program contol.

The curve labeled 2 shows the performance of this algorithm on two processors. This
curve plots the performance of the algorithm for 2; 4; 6; : : : ; 256 streams (which correspond
to 1; 2; 3; : : : ; 128 streams per processor). In general, the ith curve plots the performance for
i; 2i; 3i; : : : ; 128i streams on i processors. This depiction lets us compare the performance of
the algorithm on a varying number of processors with a simple 2-dimensional plot.

We can see that the performance of the algorithm improves smoothly as the number
of processors is increased, with some indication of saturation going from 7 to 8 processors.
We conjecture that this is due to interference from operating system activities that must
necessarily run on the the last processor.

We have marked a scale indicating the performance (in M
op/s) achieved on the right
hand side of this plot which shows that on 8 processors the program achieves 1.7 G
op/s.
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Figure 9: Performance of Edge-Colored code. The curve labeled \1 processor" represents
the times for 1; 2; 3; : : : ; 128 streams (on 1 processor.) The one labeled \2" shows the times
for 2; 4; 6; : : : ; 256 streams (on 2 processors), and so on.

5 The Synchronized Algorithm

The edge-colored algorithm presented above has two overheads:

1. The time required to actually color the edges and reorganize data (this is a one time
cost, assuming the mesh is static), and

2. The overhead of executing the color loop (this includes synchronization overhead at
the bottom of the loop).

In the edge-colored algorithm, we colored the edges and processed only like-colored edges
in parallel to avoid race conditions in updating variables. These updates appear in the form,
such as,

dw(i) = dw(i) - xincr

The full/empty bits of the MTA permit very �ne-grained synchronization, and thus
updates to variables such as dw above can be done atomically. This lets us eliminate the
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overheads associated with edge-coloring. Furthermore, because updates are done atomically
for individual update statements, there is less contention than in the case where an entire
section of code is marked as a critical section. Consequently, using the synchronization
feature allows the code to scale to larger numbers of threads. The serial algorithm can be
run in parallel on the MTA, provided the compiler is warned, if it does not determine this
on its own, about the sections of codes where it should ensure atomic updates. In this case,
the preprocessing step of coloring and reorganizing data is not required and the overhead of
the color loop and its associated synchronization costs are avoided.

5.1 Using the Full/Empty bits

The behavior of the MTA's full/empty bits may be summarized below. Note that the
operations described are atomic with respect to reading or writing and changing the state
of the full/empty bit.

� A synchronized write into a variable succeeds when it is empty . If the variable is full
then, the write blocks until it becomes empty . When the write completes, the location
is set full .

So, a thread attempting a synchronized write into a full location will be suspended (by
hardware) and will resume only when that location becomes empty .

� A synchronized read from a variable succeeds when it is full . If it is empty , then the
read blocks until it becomes full . When the read completes, the location is set empty .

So, a thread attempting a synchronized read from an empty location will be suspended
(by hardware) and will resume only when that location becomes full .

There are several ways of using the full/empty bits, as detailed below. They are quite
e�ective at atomically updating variables, such as those that appear in the unstructured
mesh code. For example, in the code

dw(i) = dw(i) - xincr

the update to dw(i) can be done as follows:

1. Perform a synchronized read of dw(i).

2. Perform the subtraction (in registers).

3. Store the result to dw(i) under a synchronized write.

This way the update to dw(i) is guaranteed to be atomic with respect to other loop instan-
tiations wanting to update the same dw(i).
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5.1.1 Synchronized Variables

In Fortran a variable can be declared synchronized thus:

sync real dw(100)

or, via directive:

C$TERA SYNC dw

real dw(100)

In this case, writes and reads to/from dw() will follow the full/empty rules given above.
This approach requires careful thought and is not recommended for porting existing codes.
However, it may result in concise and elegant code when a program is written from the
ground up with synchronized variables in mind.

5.1.2 Machine Generics

Machine language instructions such as writeef() (\wait until a variable is empty, then write
a value into it and set the full/empty bit to full") can be invoked from within Fortran or C.
These are known as machine generics.

To ensure that the Fortran update

dw(i) = dw(i) - xincr

is handled properly when several threads are using the same value of i, we could use

call writeef(dw(i), readfe(dw(i)) - xincr)

Machine generics such as writeef and readfe are not compiled into function or subroutine
calls|they become individual MTA machine instructions.

This technique is the most 
exible and gives full control to the programmer. He or she has
the option of using regular or synchronized (a la the full/empty bit) load /store operations
on any particular variable. One advantage is that a single variable can serve to lock a whole
code section, which may be desirable to implement a large critical section. On the other
hand, this must be balanced with the rest of the computation. If the section is too large
relative to the rest of the computation, then it can increase the likelihood of contention.

A disadvantage in this approach is that extensive use of writeef, readfe and other
generics can obscure the code and makes it diÆcult to read.

5.1.3 Compiler Directives

Compiler directives can be used to make the compiler use full/empty bits to ensure correct
updating. For example, in the following code fragment,

C$TERA UPDATE

dw(i) = dw(i) - xincr
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the directive instructs the compiler to insert appropriate machine instructions to insure that
the update to dw(i) is atomic.

This is the cleanest solution as it requires no change to serial code and does not obfuscate
the program text. This is the solution we have used. However, this approach may not work
in all situations.

5.1.4 Compiler Detection

It is also possible for the compiler to detect program statements where use of full/empty bits
would be required and insert the required machine instructions. This is the least intrusive
solution but, as in the synchronized approach described above, may not work in all cases.
At the time of our experiments, the compiler could not automatically parallelize the update
loop and ensure atomic updates are used. Today, the compiler can parallelize the loop and
do atomic updates without any directives.

5.2 Performance of the Synchronized Code
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Figure 10: Performance of Synchronized Code.
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Figure 11: Comparison of Synchronized Code with Edge-Colored Code.

The performance of the synchronized code is shown in Figure 10. A comparison of the
original synchronized code and the edge-colored code is given in Figure 11. It is evident from
these �gures that the synchronized code is signi�cantly better than the edge-colored code.
Its performance is almost linear with increasing processors, and it achieves nearly 2 G
op/s
on 8 processors.

Recall that the synchronized code is just the serial code with the addition of a few
compiler directives. These directives cause the MTA to use its full/empty bits to ensure
correct updating. This eliminates the overhead of the edge color loop and its associated
synchronization. These directives were necessary for correct parallelization at the time our
experiments were done. The current version of the MTA compiler does not require the use
of any directives.

It is interesting to note that the edge-colored code has a signi�cant drop-o� at 8 proces-
sors. The overheads in this code presumably saturate the machine more severely than is the
case with the synchronized code.
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Figure 12: E�ect of Varying Grain on Run Time.

6 Experiments with Grain Size

The \edge-based" loop in EUL3D is used in numerous other unstructured mesh problems.
Other problems might have grain sizes very di�erent from EUL3D. To get an idea of how
performance varies with changing grain size, we arti�cially modi�ed the synchronized version
of the EUL3D solver, which was described in section 5 above. In the remainder of this paper,
we refer to this synchronized version as the \original" code. The experiments in this section
were suggested by David Keyes of ICASE. Harry Jordan of the University of Colorado
assisted us with the analysis that follows.

The original solver has 12 variables per node. We modi�ed these to 6 and 22. We also
modi�ed the computations in the edge loop to roughly halve or double them.

The results of these experiments are summarized in Figure 12. The plots show that the
speedup curves follow generally the same pattern. In the small code, performance saturates
somewhat earlier (i.e., for a smaller number of streams) than the original code, which in turn
saturates before the large code. This is because there is more work available per iteration
as we increase the grain size. The large code's performance envelope shows a rounder knee,
indicating that its performance is saturating. This is con�rmed by Figure 13 which shows a
distinct drop-o� in M
op/s for the 8th processor. At the time our experiments were done,



The Cray MTA & Unstructured Meshes, Version 1, Sep. 26, 2000 22

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

M
flo

p/
s

processors

Comparison of three grain sizes

Large

Original

Small

Figure 13: E�ect of Varying Grain on Performance in M
op/s.

the SDSC MTA had more disabled links than the design anticipated in the processor-memory
network. Consequently, performance on the maximum number of processors in a system (8
in our case) were somewhat degraded.

To analyze these results in detail we turned to the CANAL (Compiler Analysis) tool
that accompanies the MTA compiler. This tool supplied us with the instruction counts for
the various loops of the three codes as well as the expected number of repetitions of these
loops (in our case these were the numbers of nodes and edges in the mesh). In addition to
instruction count, CANAL indicates the number of 
oating point operations in each loop.

This information is summarized in Table 1. This table enumerates the predicted and
observed performance on one processor for the three grain sizes. The entries in this table
are, for each grain size, the number of instructions executed in one program cycle (that is, the
cycle whose timings are given in Figure 12). The table also lists the number of 
oating point
operations (
op) in each cycle. The 
op count can exceed the number of instructions because
the MTA is capable of launching more than one 
oating point operation per instruction. By
dividing this by the number of instructions we can obtain the predicted performance in units
of 
op/tick. Since the machine was operating at 255 MHz at the time these experiments were
done, multiplying 
op per clock tick by 255 gives us the predicted performance in M
op/s.
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Table 1: Predicted and measured performance for various grain sizes on one processor.

Grain Instructions 
op M
op/s
Predicted Measured Ratio

Small 27,218,171 26,356,691 246.93 223.13 0.90
Original 46,432,589 48,153,363 264.45 251.58 0.95
Large 82,735,110 74,043,197 228.21 211.22 0.93

The measured performance in M
op/s is obtained by dividing the 
op count by the actual
time needed to complete one cycle. There is close (but not perfect) agreement between the
predicted and measured performance (M
op/s). This mismatch is explained by the fact
that our analysis, based on CANAL output, does not include the overhead for starting up
the parallel regions, loop control, and other compiler-controlled bookkeeping mechanisms.
Furthermore, CANAL includes information only for loops and thus its output and the actual
instruction count di�er somewhat.

Of greatest interest is the fact that the lower measured performance of the large grained
code is accurately predicted by our analysis. The large grained code's main loop has more
work. This requires more registers than are available. The compiler ends up having to
generate code to save and reload the registers to/from memory. Consequently, the eÆciency
of the loop, relative to the number of instructions needed to implement it, is lower than that
for the loops with less work per loop body. Nevertheless, it scales well on 1{7 processors.

Table 2 lists the measured speedup of the three grain sizes. For this table, speedup is
de�ned as

speedup =
best time to execute the algorithm on one processor

best time to execute the algorithm on n processors
;

where \best" means the minimum over all possible numbers of streams. This minimum
corresponds to the 
attened tails of the curves in Figure 12.

For the small and original grain sizes we obtain a speedup of 7:6 for 8 processors which is
95% of ideal. The large grained code has poorer performance with a speedup of 6:9, corre-
sponding to 86% of ideal. This is conjectured to be the result of the much heavier memory
access requirements of this code while running with a somewhat handicapped processor-
memory network, the handicap a�ecting mostly memory access of the 8th processor.

7 Conclusions

Our experience with the Cray MTA has generally been positive. We were able to port an
existing edge-colored parallel code (previously run on the SPP-2000 at Caltech) by changing
only the parallelization directives.

We also parallelized an existing serial code, which is the workstation version, on the
MTA with the addition of a few compiler directives. In this case we invoked, through the



The Cray MTA & Unstructured Meshes, Version 1, Sep. 26, 2000 24

Table 2: Measured speedup for various grain sizes on 1{8 processors.

Procs. Small Original Large
M
op/s Speedup M
op/s Speedup M
op/s Speedup

1 223.13 1.00 251.58 1.00 211.22 1.00
2 442.32 1.98 500.28 1.99 416.57 1.97
3 661.20 2.96 746.70 2.97 619.62 2.93
4 870.98 3.90 992.55 3.95 815.37 3.86
5 1082.81 4.85 1229.91 4.89 1014.89 4.80
6 1290.92 5.79 1457.87 5.79 1195.85 5.66
7 1497.71 6.71 1685.75 6.70 1370.41 6.49
8 1695.07 7.60 1907.59 7.58 1456.74 6.90

use of full/empty bits, the word-based synchronization mechanism of the machine and thus
eliminated the overhead of the edge-colored loop. A more recent version of the compiler is
capable of parallelizing this code without any directives.

Both versions of our code were run on 1 to 8 processors. No changes will be required to
run on any additional processors.

The edge-based loop used in EUL3D is at the heart of many other unstructured mesh
algorithms. It will therefore be of interest to port other unstructured mesh problems to the
MTA.

Cell-based (as opposed to edge-based) loops should be similarly easy to parallelize and
need to be investigated. Finally, we plan to port other non-uniform problems, such as
multiblock. The MTA's insensitivity to memory access patterns, ability to tolerate memory
latencies via low-level multithreading, and support for synchronized memory access will be
major assets for such problems.
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9 Web Sites of Interest

www.cray.com/products/systems/craymta/

www.npaci.edu/MTA

www.sdsc.edu

www.icase.edu
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